Alternative
Rasterization

David Sleeper
david.sleeper@gmail.com
November 22" 2021 ‘

Q&




FFP (Fixed function Pipeline)

* Based on a few functions able to do basic texturing and
rendering of meshes

* CPU mesh animation and skinning

Shading (Programmable Pipeline *kinda™*)
* \Vertex
e Still fixed for input assembly
* Pixel
* Flexible but early forms had fairly limited resources, both in type and in

Pa St 8 numbers
PBR (Physically based rendering)

Deferred Renderers (variations of this in most
modern games)

* Draw info to offscreen render targets that you will later
composite into something useful for final image

* Common to draw diffuse, normal, specular and other
information into these render targets

‘

—

A 4

Driven by computer science rather than direct hardware updates




Nanite and Compute
Rasterization

* Meshlets/clusters
* DAG (Direct Acyclic Graph)
* Compute/Software rasterizer

* Link to UE5 engineer talk:



https://www.youtube.com/watch?v=eviSykqSUUw

Meshlet/Cluster

e Smaller subsets of the original mesh of
vertices/indices

* Clusters and meshlets for mesh shading
very similar as the idea is to replace the
input assembler

* Both approaches have a small and finite
requirement about how many vertices
and primitives you want grouped at
time of draw

* More shared edges the better! This
naturally reduces vertex count.

DX12 Mesh Shader Example:


https://docs.microsoft.com/en-us/samples/microsoft/directx-graphics-samples/d3d12-mesh-shader-samples-win32/

Mesh Simplification

* Been around awhile--idea is to collapse
edges based on a desired error
algorithm

e Can factor in errors based on normal
changes, triangle size, etc.

* Ultimate goal is to be able to specify a
new target triangle count

e C++ link to a nice little github example:

Edge collapse.

Source of image:


https://github.com/sp4cerat/Fast-Quadric-Mesh-Simplification
https://github.com/andandandand/progressive-mesh-reduction-with-edge-collapse

Directed Acyclic Graph

Not directly a LOD (level of detail) tree!
 METIS — open-source graph partitioner

* Not a tree since child-sharing exists due
to nature of locking and unlocking
shared edges on mesh simplification

e Ultimate goal is localized LODs within
the mesh to minimize micro polys (sub
pixel triangles)

 Example:

Time link from Nanite Deep Dive:

LOD3

LOD2

LOD1

LODO


http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
https://youtu.be/q8OuP3SNQxM
https://youtu.be/eviSykqSUUw?t=1031

Compute Rasterizer

* Taking your clusters and drawing them
directly into a render target/texture
using a compute shader

 Tend to be called software rasterization
not to be confused with CPU
rasterization

e EX:

* For Nanite they don’t always do © www scratchapixel.com
software rasterization if triangles are
larger than a certain threshold (~35
minute mark in deep dive video)

Image source:


https://www.shadertoy.com/view/XdlGzn
https://www.scratchapixel.com/lessons/3d-basic-rendering/rasterization-practical-implementation/rasterization-stage

Nanite Big Old Caveat

e Assuming dense continuous mesh, doesn’t
really happen unless a photogrammetry
mesh or artist planned it out carefully (goal
of nanite LOD is to get it down to a single
node at the end of simplifying)

* Foliage and many common objects are
traditionally NOT rendered or able to be
setup as a continuous mesh

* Photogrammetry meshes are just unwieldy
in most 3d modelers

* Epic bought Quixel, a photogrammetry
company...




Splat, SDF,
and Sony
Dreams

e Splat

* Using either point rendering or custom rasterizer
to draw little circle patterns or shapes at the point
of pixel position of the scene

* SDF (signed distance function)
* Uses a simple function per shape to return how
far your point is from the surface

Tremendously simple...
* Amazing results

* Crazy slow in the naive approach

* Originated in the “demo” scene of graphics
development

e Sony Dreams tech
* Combination of both and some extra in between


https://github.com/sebastianlipponer/surface_splatting

S ‘ a t S D F * Shadertoy awesome resource for SDF
plat, : .
d S e Claybook (available on Steam)

D re a m S . So.ny Dreams
Links



https://www.shadertoy.com/view/Xds3zN
https://store.steampowered.com/app/661920/Claybook/
https://www.youtube.com/watch?v=Xpf7Ua3UqOA
https://www.playstation.com/en-us/games/dreams/
http://advances.realtimerendering.com/s2015/AlexEvans_SIGGRAPH-2015-sml.pdf

* Fairly rigid in design
e Add geometry to the proper 3d structures the
driver/card are designed for

* Run groups of dispatched rays with specialized
shader to receive those results

Ray Tra Cl ng * Can be used directly for all rendering or partially for
global illumination, ambient occlusion, or various
scene effects



https://www.nvidia.com/en-us/geforce/news/metro-exodus-pc-enhanced-edition-ray-tracing-dlss/

