
Alternative
Rasterization

David Sleeper

david.sleeper@gmail.com

November 22nd, 2021

Past

• FFP (Fixed function Pipeline)
• Based on a few functions able to do basic texturing and

rendering of meshes

• CPU mesh animation and skinning

• Shading (Programmable Pipeline *kinda*)
• Vertex

• Still fixed for input assembly

• Pixel
• Flexible but early forms had fairly limited resources, both in type and in

numbers

• PBR (Physically based rendering)

• Deferred Renderers (variations of this in most
modern games)

• Draw info to offscreen render targets that you will later
composite into something useful for final image

• Common to draw diffuse, normal, specular and other
information into these render targets

Driven by computer science rather than direct hardware updates

Nanite and Compute
Rasterization

• Meshlets/clusters

• DAG (Direct Acyclic Graph)

• Compute/Software rasterizer

• Link to UE5 engineer talk:
https://www.youtube.com/watch?v=evi
SykqSUUw

https://www.youtube.com/watch?v=eviSykqSUUw

Meshlet/Cluster

• Smaller subsets of the original mesh of
vertices/indices

• Clusters and meshlets for mesh shading
very similar as the idea is to replace the
input assembler

• Both approaches have a small and finite
requirement about how many vertices
and primitives you want grouped at
time of draw

• More shared edges the better! This
naturally reduces vertex count.

DX12 Mesh Shader Example:
https://docs.microsoft.com/en-us/samples/microsoft/directx-graphics-samples/d3d12-mesh-shader-samples-win32/

https://docs.microsoft.com/en-us/samples/microsoft/directx-graphics-samples/d3d12-mesh-shader-samples-win32/

Mesh Simplification

• Been around awhile--idea is to collapse
edges based on a desired error
algorithm

• Can factor in errors based on normal
changes, triangle size, etc.

• Ultimate goal is to be able to specify a
new target triangle count

• C++ link to a nice little github example:
https://github.com/sp4cerat/Fast-
Quadric-Mesh-Simplification Source of image:

https://github.com/andandandand/progressive-mesh-reduction-with-edge-collapse

https://github.com/sp4cerat/Fast-Quadric-Mesh-Simplification
https://github.com/andandandand/progressive-mesh-reduction-with-edge-collapse

Directed Acyclic Graph

• Not directly a LOD (level of detail) tree!

• METIS – open-source graph partitioner
http://glaros.dtc.umn.edu/gkhome/met
is/metis/overview

• Not a tree since child-sharing exists due
to nature of locking and unlocking
shared edges on mesh simplification

• Ultimate goal is localized LODs within
the mesh to minimize micro polys (sub
pixel triangles)

• Example:
https://youtu.be/q8OuP3SNQxM

Time link from Nanite Deep Dive:

https://youtu.be/eviSykqSUUw?t=1031

http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
https://youtu.be/q8OuP3SNQxM
https://youtu.be/eviSykqSUUw?t=1031

Compute Rasterizer

• Taking your clusters and drawing them
directly into a render target/texture
using a compute shader

• Tend to be called software rasterization
not to be confused with CPU
rasterization

• EX:
https://www.shadertoy.com/view/XdlGz
n

• For Nanite they don’t always do
software rasterization if triangles are
larger than a certain threshold (~35
minute mark in deep dive video)

Image source:
https://www.scratchapixel.com/lessons/3d-basic-rendering/rasterization-practical-
implementation/rasterization-stage

https://www.shadertoy.com/view/XdlGzn
https://www.scratchapixel.com/lessons/3d-basic-rendering/rasterization-practical-implementation/rasterization-stage

Nanite Big Old Caveat

• Assuming dense continuous mesh, doesn’t
really happen unless a photogrammetry
mesh or artist planned it out carefully (goal
of nanite LOD is to get it down to a single
node at the end of simplifying)

• Foliage and many common objects are
traditionally NOT rendered or able to be
setup as a continuous mesh

• Photogrammetry meshes are just unwieldy
in most 3d modelers

• Epic bought Quixel, a photogrammetry
company…

Splat, SDF,
and Sony
Dreams

• Splat
• Using either point rendering or custom rasterizer

to draw little circle patterns or shapes at the point
of pixel position of the scene

• https://github.com/sebastianlipponer/surface_spl
atting

• SDF (signed distance function)
• Uses a simple function per shape to return how

far your point is from the surface
• Tremendously simple…

• Amazing results

• Crazy slow in the naïve approach

• Originated in the “demo” scene of graphics
development

• Sony Dreams tech
• Combination of both and some extra in between

https://github.com/sebastianlipponer/surface_splatting

Splat, SDF,
and Sony
Dreams
Links

• Shadertoy awesome resource for SDF
• https://www.shadertoy.com/view/Xds3zN

• Claybook (available on Steam)
• https://store.steampowered.com/app/661920/Cl

aybook/

• https://www.youtube.com/watch?v=Xpf7Ua3UqO
A

• Sony Dreams
• https://www.playstation.com/en-

us/games/dreams/

• http://advances.realtimerendering.com/s2015/Al
exEvans_SIGGRAPH-2015-sml.pdf

https://www.shadertoy.com/view/Xds3zN
https://store.steampowered.com/app/661920/Claybook/
https://www.youtube.com/watch?v=Xpf7Ua3UqOA
https://www.playstation.com/en-us/games/dreams/
http://advances.realtimerendering.com/s2015/AlexEvans_SIGGRAPH-2015-sml.pdf

Ray Tracing

• Fairly rigid in design

• Add geometry to the proper 3d structures the
driver/card are designed for

• Run groups of dispatched rays with specialized
shader to receive those results

• Can be used directly for all rendering or partially for
global illumination, ambient occlusion, or various
scene effects

• https://www.nvidia.com/en-
us/geforce/news/metro-exodus-pc-enhanced-
edition-ray-tracing-dlss/

https://www.nvidia.com/en-us/geforce/news/metro-exodus-pc-enhanced-edition-ray-tracing-dlss/

